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Abstract

In this study, we investigate the effective resolution of deterministic AI weather prediction models. We find that an ideal,

perfectly trained AI model follows the mean of the predictive distribution for the lead time interval which is used in its loss

function during training. We demonstrate the consequences and limitations of this result with forecast data from various AI

models, including Aurora, Pangu, GraphCast and GenCast and we compare them to ensemble and deterministic forecasts

from the European Centre for Medium Range Weather Forecasting. We further demonstrate the impact of the resolution on

mean-square error scores and suggest a method for a fairer comparison of two models with different effective resolution.
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Key Points:11

• The effective resolution of an ideal AI model is determined by the spectrum of the12

ensemble mean at the lead times used in the loss function13

• Real-world AI models approximate this behavior, but with a bias towards spatial14

smoothing15

• Smooth models get better scores by avoiding the double-penalty effect16
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Abstract17

In this study, we investigate the effective resolution of deterministic AI weather predic-18

tion models. We find that an ideal, perfectly trained AI model follows the mean of the19

predictive distribution for the lead time interval which is used in its loss function dur-20

ing training. We demonstrate the consequences and limitations of this result with fore-21

cast data from various AI models, including Aurora, Pangu, GraphCast and GenCast22

and we compare them to ensemble and deterministic forecasts from the European Cen-23

tre for Medium Range Weather Forecasting. We further demonstrate the impact of the24

resolution on mean-square error scores and suggest a method for a fairer comparison of25

two models with different effective resolution.26

Plain Language Summary27

In recent years, models based on artificial intelligence (AI) have become equally28

good or even better at predicting the weather than standard models, which are based29

on solving physical equations. However, AI models often produce overly smooth fore-30

casts, which lack relevant small-scale spatial structures. Here, we develop a mathemat-31

ical argument to better understand this low “effective resolution” and investigate its ap-32

plicability on recently developed AI models. It turns out that the lead time interval that33

is used during training plays a crucial role. Ironically, smooth forecasts can produce bet-34

ter scores by ignoring the small-scale structures and appear better than they actually35

are. We suggest a method to correct for this sometimes unwanted effect and get to a fairer36

comparison.37

1 Introduction38

Recently, several weather prediction models became available which use artificial39

intelligence (AI) to compute a deterministic forecast of the atmospheric state from an40

initial state (e.g., Bi et al., 2023; Lam et al., 2023; Bodnar et al., 2024). They have been41

trained on past atmospheric data and use mean square error (MSE) or mean absolute42

error (MAE) metrics to estimate their loss during training. These models have achieved43

similar or even better scores relative to “standard” numerical weather prediction mod-44

els, which are based on solvers of the fluid equations, most notably the leading opera-45

tional model — the Integrated Forecasting System (IFS) from ECMWF.46

The spatial resolution of a weather model is defined as the size of its grid boxes.47

However, its “true” or “effective” resolution is usually much lower and is defined as the48

smallest spatial scale where atmospheric structures are reproduced with realistic ampli-49

tudes. The lower the effective resolution of a model, the smoother the forecast fields ap-50

pear visually. While the effective resolution of standard weather models is mostly con-51

stant with lead time and adjusted with a diffusion scheme, it is less clear what determines52

the effective resolution of AI models, which can also significantly change with lead time.53

In fact, many AI models seem to suffer from excess smoothing and loss of energy at small54

scales (Ben Bouallègue et al., 2024; Selz & Craig, 2023).55

For MSE or MAE metrics, it is well known that the optimal prediction is the mean56

or median, respectively, of the predictive distribution (Section 8.2 of Hsieh, 2023). Hence,57

one might expect that an AI forecast is closely related to the mean of an ensemble fore-58

cast. However, it is difficult to see such a relationship in practice (Bonavita, 2024).59

The effective resolution of a weather prediction model is important for several rea-60

sons. First, the low computational cost of running AI models enables the creation of large61

ensembles to more accurately represent the forecast distribution. However, if each mem-62

ber has a low effective resolution or even resembles an ensemble mean, crucial variabil-63

ity will be missing. Second, extreme events are often caused by a superposition of fea-64
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tures on many scales and a low resolution model may systematically underestimate them65

(e.g., Charlton-Perez et al., 2024). Third, for performance comparisons based on (root)66

mean square errors, smooth predictions will lead to better scores by avoiding the double-67

penalty effect, especially at long lead times (Ben Bouallègue et al., 2024; Bonavita, 2024),68

which has been framed as the “accuracy–activity trade-off” (Ben Bouallègue et al., 2024).69

Hence the question arises to what extent the better scores of the AI models are an ar-70

tifact of their smoothness.71

In this research letter, we show what effective resolution can be expected from the72

AI model in the ideal case of infinite capacity and perfect training and clarify the rela-73

tionship between AI model predictions and the ensemble mean or median. Using fore-74

casts from recent AI models, we then explore the practical validity of this argument and75

its limitations. Finally, we analyze and explain the effect of smoothing on error scores76

and suggest a spectral rescaling method for a “fairer”, resolution-independent compar-77

ison.78

2 Models, Data and Methods79

2.1 Mathematical argument80

We start by presenting a mathematical argument that connects the effective res-81

olution of the AI model to the design of the loss function. Consider a true initial con-82

dition state vector xt0 , from which we want to calculate a prediction x̂θ
t (xt0) using an83

AI model, where t0 and t refer to the forecast init and valid time, respectively, and θ to84

the set of learnable parameters of the model. Since the initial state is typically estimated85

with a certain amount of uncertainty which will grow with forecast lead time τ = t−86

t0, perfect forecasts from such imperfect initial states will be samples from a predictive87

distribution p(xt|xt0).88

With the training of an AI system, one tries to estimate the set of parameters θ∗89

which minimize the expectation of a distance metric between model forecasts x̂θ
t (xt0) and90

true states xt, the so-called loss function. Here, we assume a simple L2 metric over the91

normalized state vector and discuss other metrics below. In an ideal setting, the expec-92

tation of the loss function is taken over all possible initial and final states, hence93

θ∗ = argmin
θ

Ep(xt,xt0
)

[
||xt − x̂θ

t (xt0)||2
]
. (1)

With the law of total expectation and by expanding the square, this can be rewritten94

as95

θ∗ = argmin
θ

Ep(xt0 )

[
||µt|t0 − x̂θ

t (xt0)||2
]
, (2)

where we have defined the mean of the predictive distribution96

µt|t0 :=

∫
dxt xt p(xt|xt0). (3)

Consequently, the optimal prediction is the mean of the predictive distribution, i.e.:97

x̂θ∗

t (xt0) = µt|t0 . (4)

Some AI models use multiple time steps (t1, . . . , tn) inside the loss function and98

average over the individual loses:99

θ∗ = argmin
θ

Ep(xtn ,...,xt1 ,xt0 )

[ tn∑
t′=t1

||xt′ − x̂θ
t′(xt0)||2

]
. (5)

We will refer to this averaging period as the “lead time training interval”100

τtrain := tn − t0. (6)
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With the linearity of the expectation and the above we get101

θ∗ = argmin
θ

tn∑
t′=t1

Ep(xt0
)

[
||µt′|t0 − x̂θ

t′(xt0)||2
]
. (7)

Hence an optimal prediction will follow the mean of the predictive distribution over τtrain,102

x̂θ∗

t (xt0) = µt|t0 , for t ∈ t0 + [τ1, . . . , τtrain]. (8)

As we will see later in detail, this result has direct implications with respect to the ef-103

fective resolution of the model, since unpredictable small-scale structures cancel out in104

the mean.105

A similar result holds for other loss functions: In the case of the widely used L1106

metric it can be shown that an ideal prediction will follow the median of the predictive107

distribution instead of the mean. Since most atmospheric variables have approximately108

symmetric predictive distributions, the mean and median are similar.109

For real-world AI models the expectation in the ideal loss function needs to be re-110

placed by averages over a training dataset,111

L ∼
∑
t0

∑
τ

∑
j

wj

(
x
(j)
t0+τ − x̂

θ (j)
t0,τ

)2

, (9)

with j indexing the model state vector (grid box, level, variable). Mostly, ERA5 reanal-112

ysis (Hersbach et al., 2017) and IFS operational analysis have been used with initial times113

(t0) from the satellite era (since 1979) as estimates of the truth. It is common to insert114

weighting factors wj into the loss function (e.g., Bi et al., 2023). Also note that some115

AI models target differences rather than the variable values directly. However, none of116

these modifications affects the optimality results stated above.117

Aside from these simple approaches, more complicated loss functions have some-118

times been used, which also include non-linear functions of the state vector like spectra119

(e.g., Kochkov et al., 2024). In such cases the presented mathematical argument may120

not apply.121

The ensemble median or mean is the target of training, but may not be achieved122

in practice. Neural networks appear to exhibit a spectral bias (Xu et al., 2019; Rahaman123

et al., 2019), where large spatial scales are learned first, and small scales may not be learned124

at all (Chattopadhyay et al., 2024). Therefore, we hypothesize that AI models due to125

lack of capacity or incomplete training will tend to be even smoother than the mean.126

2.2 AI-model forecasts and data127

To test the applicability of the mathematical argument, we analyze the effective128

resolution of several different AI models.129

Aurora (Bodnar et al., 2024) is a transformer-based model. Its basic version, in-130

tended as a foundation model, is trained on a mixture of forecasts, analysis data, reanal-131

ysis data, and climate simulations. Here, we consider two versions with additional fine-132

tuning on IFS-HRES data. One version uses a short lead time training interval of only133

the first two time steps (6 h, 12 h), which we refer to as Aurora-S (for short). The other134

version uses a long lead time training interval of ten days, which we will call Aurora-L135

(for long).136

Pangu (Bi et al., 2023) is also a transformer-based model, which was trained on137

ERA5 only. It comes in 4 different versions that perform forecasts for 4 different lead138

times (1 h, 3 h, 6 h, 24 h). The 1-h, 3-h, and 6-h models produce far less accurate fore-139

casts than the 24-h model and are intended to be used only to successively fill in time140
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steps. However, for the purpose of this study, we run each of these models individually.141

The lead time training interval for all of these models is only one time step.142

GraphCast (Lam et al., 2023) is an AI model based on a graph neural network. Here143

we will not use the paper version, but the “operational” version, which has additional144

training on IFS-HRES data.145

GenCast (Price et al., 2025), unlike the previous models, is trained to generate sam-146

ples from the forecast distribution. It creates forecasts from denoising random fields. For147

the purpose of this paper, we only consider a single ensemble member. Like with Graph-148

Cast, we use the “operational” version, which in addition to ERA5 has been trained on149

IFS-HRES data.150

All of these models use a regular lat-lon grid with 0.25◦ grid spacing and either a151

simple L1 or L2 metric in their loss function. With each model, we conducted a sam-152

ple of 12 forecasts, initialized on the first day of each month of the year 2024. Unless stated153

otherwise, the presented results are averages over these cases to reduce random variabil-154

ity. All forecasts are carried out for 15 days lead time, except for Pangu-1h, which quickly155

became unstable. Regardless of its training dataset, we initialize every AI model with156

the IFS operational analysis.157

To estimate the effective resolution of the models, we consider the kinetic energy158

spectrum at the upper troposphere (300 hPa), which follows known power laws (e.g., Nas-159

trom & Gage, 1985). Kinetic energy spectra are computed based on global spherical har-160

monic coefficients of divergence (d) and vorticity (ζ), which are calculated from the hor-161

izontal wind using the Climate Data Operators (CDO; Schulzweida, 2024). The kinetic162

energy of a total wave number l is then given by (see e.g., Augier & Lindborg, 2013)163

KE(l) =
r2

2l(l + 1)

l∑
m=−l

(
|ζlm|2 + |dlm|2

)
, (10)

where r is the radius of the earth and a wavelength λ = 2πr/l is attributed to the global164

wave number l.165

Finally, we need an estimate of the predictive distribution (3) to test the applica-166

bility of the mathematical argument. This will be taken from the ECMWF ensemble pre-167

diction system (IFS-ENS), a 50-member ensemble constructed from perturbations to sam-168

ple uncertainty in the initial conditions and the model (see https://www.ecmwf.int).169

Here, we only show empirical results using the mean, since mean and median are sim-170

ilar for upper tropospheric winds but the median is more prone to sampling error.171

The ensemble also includes an unperturbed control simulation (IFS-CTL), which172

since the resolution upgrade in June 2023 is identical to the former high-resolution de-173

terministic run (HRES) and will be used as reference. For validation, the IFS operational174

analysis is used as the ground truth.175

3 Results176

3.1 Effective resolution and ensemble mean177

We start by investigating the effective resolution of the Aurora-S and Aurora-L model,178

which differ greatly in their lead time training interval (12 hours versus 10 days), but179

are otherwise identical. Figure 1 shows their kinetic energy spectra for four different lead180

times. The IFS ensemble mean serves as estimator of the predictive distribution. Due181

to uncertainty growth from initial condition and model uncertainty, as the forecast lead182

time increases more and more spatial scales become unpredictable, which leads to their183

cancellation in the ensemble mean. This process starts at the smallest scales and suc-184

cessively affects larger and larger scales with increasing lead time (e.g., Selz et al., 2022).185
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Figure 1. Kinetic energy spectra of Aurora-S (left) and Aurora-L (right), for several forecast

lead times (solid lines). The dashed lines indicate the spectra of the IFS ensemble mean.

Hence, the “effective resolution” of the IFS ensemble mean continuously decreases with186

lead time and the kinetic energy becomes unrealistically low on larger and larger scales.187

Looking at the Aurora-S simulations, the spectrum indicates an initial loss of small-188

scale energy in the first 12 hours, but stays approximately constant afterwards. For scales189

larger than about 300 km, the spectrum of Aurora-S stays close to the 12-h IFS ensem-190

ble mean. In contrast, the Aurora-L simulations constantly lose energy over lead time191

and follow the IFS ensemble mean closely, at least for amplitudes larger than 10−2 m2 s−2.192

The discrepancy below is due to sampling errors from the relatively small IFS ensem-193

ble. Also keep in mind that the IFS ensemble mean is only an estimate of the predic-194

tive distribution.195

These results clearly illustrate the importance of the lead time training interval for196

the effective resolution of deterministic AI models. While Aurora-S produces a largely197

stable spectrum, Aurora-L suffers from a continuous loss of kinetic energy and effective198

resolution and closely follows the IFS ensemble mean. To further demonstrate the sig-199

nificance of these differences, Fig. 2 shows maps from a single 10-day forecast from both200

Aurora models, the IFS-CTL and the IFS ensemble mean. Aurora-S and the IFS-CTL201

show pronounced Rossby wave structures with troughs and ridges and associated merid-202

ional winds. Although different from each other and from the truth, both states are ap-203

proximate realizations of the atmospheric flow or samples from the predictive distribu-204

tion. On the other hand, the loss of small-scale kinetic energy of the Aurora-L forecasts205

results in highly smoothed spatial fields with strongly damped Rossby waves. The re-206

semblance of Aurora-L to the IFS-ensemble mean is clearly visible. These forecasts are207

not possible realizations of the atmospheric flow, but they estimate the expectation of208

the predictive distribution.209

3.2 Kinetic energy time series210

In order to test the effective resolution and the applicability of the mathematical211

argument on further AI models, we integrate the kinetic energy between scales of 400 km212

and 4000 km. This results in a time series for each model that quantifies kinetic energy213

loss, which is shown in Figure 3, also including the IFS ensemble mean as reference.214

We start with discussing the four different versions of Pangu, where the lead time215

training interval is only the first time step, i.e., 1 h, 3 h, 6 h, and 24 h, respectively. The216

kinetic energies at the end of the training intervals are close to the IFS ensemble mean,217
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Figure 2. 10-day forecasts of 300 hPa meridional wind (color) and geopotential (lines, spacing

1000m2 s−2) over the North Atlantic and Europe for four different experiments. The forecasts

were started on 1 Jan 2024, 0 UTC.

Figure 3. 300 hPa kinetic energy between 400 km and 4000 km wavelength over lead time,

relative to initial condition. The plots on the left show a zoom into the initial period. Top and

bottom rows show different sets of models. Solid lines indicate lead times within the training

interval (τ ≤ τtrain), and dashed lines indicate later lead times. A vertical bar is marking τtrain.
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but slightly too low. Most notably, the 24-h model at its first time step has a much lower218

resolution compared to the other three models, which are roughly similar. After the train-219

ing interval, the 3-h, 6-h, and 24-h model further lose some kinetic energy, but after a220

few days show a more stable spectrum. The 1-h model however, after an initial loss of221

kinetic energy, quickly becomes unstable.222

For the two Aurora models, Fig. 3 confirms the findings already discussed above:223

Aurora-S creates a basically stable spectrum, slightly below the IFS-ensemble mean value224

at the end of the 12-h training interval, while Aurora-L produces a constantly decaying225

spectrum, closely following the IFS ensemble mean over the 10-day training interval. Note226

however, that the kinetic energy of Aurora-L is increasing again after this 10-day period,227

which points to an accumulation of unphysical noise and indicates an unstable model228

that is not suitable for longer forecasts.229

The GraphCast model with its 3-day training interval only roughly follows the IFS230

ensemble mean, being slightly smoother for the first 1.5 days, and less smooth for the231

second 1.5 days. This latter behavior contradicts our expectations by producing a fore-232

cast with higher effective resolution than the ensemble mean. However, GraphCast was233

trained using a curriculum approach in which training stated with a single time inter-234

val and then slowly increased the lead time interval out to three days. This combined235

with the fact that GraphCast is a relatively small model is likely lead to the behavior236

noted above. After the 3 days there is some further decay of kinetic energy, but the spec-237

trum remains stable after about 6-7 days.238

GenCast, which is not trained to approximate the ensemble mean or median, but239

to generate samples from the full distribution, is best able to retain the initial spectrum240

at all lead times.241

3.3 Impact of the resolution on mean-square error scores242

A standard way to evaluate the quality of deterministic weather forecasts is to com-243

pute the spatially averaged squared difference of some variable to a representation of the244

truth, referred to as mean-square error. Among others, Ben Bouallègue et al. (2024) demon-245

strated, that smooth (“low activity”) forecasts can lead to better MSE scores by avoid-246

ing the double-penalty effect. With the help of the kinetic energy spectrum, we formally247

explain the reason for the double-penalty effect and confirm it with our simulation data.248

An area-weighted mean-square error over the entire globe can equally be computed249

from spherical harmonics expansions, since Parseval’s identity applies. This allows for250

a scale-dependent formulation of the error, which for error kinetic energy (EKE) reads251

EKE(l) =
r2

2l(l + 1)

l∑
m=−l

(
|ζ̂lm − ζlm|2 + |d̂lm − dlm|2

)
, (11)

where the hat indicates the forecast and non-hat symbols indicate the truth (a similar252

formalism can be applied to limited domains using Fourier or Cosine transforms). The253

scale-dependent EKE of the 10-day forecasts is plotted in Fig. 4a, normalized with the254

kinetic energy (10) of the analysis. For reference, the equally normalized kinetic energy255

spectrum is shown in Fig. 4b.256

To interpret these plots and to understand the double-penalty effect, we expand257

the absolute square difference,258 ∑
m

|ζ̂lm − ζlm|2 =
∑
m

[
(r̂lm − rlm)2 + 2r̂lmrlm

(
1− cos(ϕ̂lm − ϕlm)

)]
, (12)

where rlm and ϕlm are amplitude and phase of the complex number ζlm, respectively.259

A similar expression holds for any other variable. Consider a mode l, that is no longer260

–8–



manuscript submitted to Geophysical Research Letters

Figure 4. (a) Error kinetic energy spectra of 10-day forecasts over wavelength, relative to the

kinetic energy spectrum of the IFS analysis. (b) Same as a, but for kinetic energy spectra. (c)

Globally averaged EKE relative to IFS-CTL, computed using (11) and summing over l. (d) Same

as c, but relative to a rescaled version of the IFS-CTL by applying (13). Note that these rescale

factors differ, depending on the model IFS-CTL was compared to.
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predictable. If the model returns zero for that mode, the second term on the left hand261

side in (12) vanishes and the error equals the amplitude of the analysis spectrum. On262

the other hand, if the model maintains the correct amplitude but predicts a random phase,263

the first term vanishes and the error equals twice the analysis spectrum (since the ex-264

pectation of the cosine term is zero) and therefore twice the error compared to predict-265

ing zeros (hence double-penalty).266

This relation between the error (EKE) and the amplitude (KE) for unpredictable267

modes becomes evident from our data by comparing Figs. 4a and b: Aurora-L and the268

IFS ensemble mean produce a normalized EKE of one for scales smaller than 2000 km269

and at the same time an amplitude close to zero. The other models resemble the IFS-270

CTL for scales larger than around 1000 km, producing an EKE of two, but an almost271

realistic amplitude. Towards small scales, the normalized EKE of all AI models except272

GenCast drops to one as a consequence of their decaying KE. The consequence of the273

double-penalty effect can also clearly be seen in the EKE time series (Fig. 4c), where smooth274

forecasts (IFS ensemble mean and Aurora-L) clearly outperform the IFS-CTL and ev-275

ery other model, most significantly at long lead times.276

As demonstrated, the scores of the AI models are enhanced by the cancellation of277

unpredictable modes, which does not indicate a “true” advantage. But the question re-278

mains, to what extent? One possibility to exclude the smoothing benefit from a com-279

parison of two models is to equalize their spectra before calculating the EKE or any other280

mean square error. This can be done by rescaling (damping) the spectral modes of model281

B to the amplitude of the smoother model A, i.e.,282

ζBlm −→

√∑
m |ζAlm|2∑
m |ζBlm|2

ζBlm, (13)

and similarly for other variables.283

The result of such a comparison is shown in Fig. 4d, where the IFS-CTL spectrum284

was rescaled to the AI model spectrum. One can see, that the superior skills of the IFS285

ensemble mean and Aurora-L from Fig. 4c are greatly reduced, especially at long lead286

times. Indeed for lead times greater than about one week, all AI models perform equally287

well compared to IFS-CTL, or rather equally badly since there is little practical predictabil-288

ity remaining (Buizza & Leutbecher, 2015; Selz et al., 2022). The difference between Figs. 4c289

and d is directly correlated to the amount of smoothing produced by the models: It is290

large for the IFS ensemble mean and Aurora-L, but small for models that approximately291

maintain the KE spectrum, like Aurora-S, Pangu and GenCast. Note that GenCast is292

trained to generate samples of the predictive distribution and hence introduces pertur-293

bations, which lead to larger errors, especially at early lead times. An even slightly worse294

degradation of the EKE can be seen from an individual member of the IFS ensemble.295

4 Discussion296

In summary, we demonstrated with a mathematical argument that the lead time297

interval in the loss function crucially determines the kinetic energy spectrum and hence298

the effective resolution of an AI model. If perfectly trained, a model would follow the299

spectrum of an ideal ensemble mean over that interval and continuously drop unpredictable300

modes, leading to increasingly smooth forecasts. We also confirmed that smooth fore-301

casts produce much better mean-square error scores by avoiding the double penalty ef-302

fect and we suggested a method to correct for that.303

From our findings, we can identify two basic approaches to weather forecasting with304

AI: Either a model could be designed to generate samples from the predictive distribu-305

tion, in which case the lead time training interval should be kept as short as possible.306

Alternatively, a model could be designed to generate the expectation (the ensemble mean)307
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of the predictive distribution, in which case the lead time training interval should extend308

to the entire intended forecast lead time.309

Both approaches have their justification, however, they should not be mixed and310

it should be made clear, which one was chosen, since this has consequences for the us-311

age of the model. Models of the first type (Aurora-S, Pangu) can be used to sample the312

forecast distribution by means of an ensemble, stated from an initial condition sample313

or using intrinsic stochastisity (GenCast). Each simulation resembles a possible state of314

the atmosphere that, at least approximately, is physically consistent. Models of the sec-315

ond type on the other hand (like Aurora-L) are not suitable to generate ensembles, do316

not produce possible realizations of the atmospheric flow and their output is physically317

inconsistent. However, they do resemble the remaining predictable structures in a sin-318

gle run and predictability can be inferred from the remaining spatial scales.319

Although the lead time training interval is crucial for the model’s effective reso-320

lution, it cannot explain every aspect of it. Most importantly, the presented mathemat-321

ical argument does not hold for predictions outside of the lead time training interval. In322

this case, previous forecasts are being fed into the model, which resemble the mean and323

are much smoother than the training dataset. The reaction of the model to this incon-324

sistency is largely unconstrained. In fact, some models in our study show instability af-325

ter the lead time training interval and most models continue to lose some kinetic energy.326

In addition, no model was able to maintain the kinetic energy spectrum on scales smaller327

than about 300-400 km. Potential reasons for these effects include insufficient training,328

insufficient capacity, limited sample size of the training data or limitations in the design329

of the network.330

Open Research Section331

The AI-model weights, example code and documentation can be found on github:332

https://github.com/google-deepmind/GraphCast, https://github.com/microsoft/333

aurora, https://github.com/198808xc/Pangu-Weather. The spherical harmonic co-334

efficients of the forecast data are available at https://opendata.physik.lmu.de/H66gKyhITQ7qS51335

(permanent link after acceptance). The IFS operational analyses, the IFS-CTL and IFS-336

ENS forecast were retrieved from ECMWF’s operational archive (https://apps.ecmwf337

.int/archive-catalogue/?class=od). To obtain access, visit https://www.ecmwf.int/338

en/forecasts/accessing-forecasts for further information.339
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Abstract17

In this study, we investigate the effective resolution of deterministic AI weather predic-18

tion models. We find that an ideal, perfectly trained AI model follows the mean of the19

predictive distribution for the lead time interval which is used in its loss function dur-20

ing training. We demonstrate the consequences and limitations of this result with fore-21

cast data from various AI models, including Aurora, Pangu, GraphCast and GenCast22

and we compare them to ensemble and deterministic forecasts from the European Cen-23

tre for Medium Range Weather Forecasting. We further demonstrate the impact of the24

resolution on mean-square error scores and suggest a method for a fairer comparison of25

two models with different effective resolution.26

Plain Language Summary27

In recent years, models based on artificial intelligence (AI) have become equally28

good or even better at predicting the weather than standard models, which are based29

on solving physical equations. However, AI models often produce overly smooth fore-30

casts, which lack relevant small-scale spatial structures. Here, we develop a mathemat-31

ical argument to better understand this low “effective resolution” and investigate its ap-32

plicability on recently developed AI models. It turns out that the lead time interval that33

is used during training plays a crucial role. Ironically, smooth forecasts can produce bet-34

ter scores by ignoring the small-scale structures and appear better than they actually35

are. We suggest a method to correct for this sometimes unwanted effect and get to a fairer36

comparison.37

1 Introduction38

Recently, several weather prediction models became available which use artificial39

intelligence (AI) to compute a deterministic forecast of the atmospheric state from an40

initial state (e.g., Bi et al., 2023; Lam et al., 2023; Bodnar et al., 2024). They have been41

trained on past atmospheric data and use mean square error (MSE) or mean absolute42

error (MAE) metrics to estimate their loss during training. These models have achieved43

similar or even better scores relative to “standard” numerical weather prediction mod-44

els, which are based on solvers of the fluid equations, most notably the leading opera-45

tional model — the Integrated Forecasting System (IFS) from ECMWF.46

The spatial resolution of a weather model is defined as the size of its grid boxes.47

However, its “true” or “effective” resolution is usually much lower and is defined as the48

smallest spatial scale where atmospheric structures are reproduced with realistic ampli-49

tudes. The lower the effective resolution of a model, the smoother the forecast fields ap-50

pear visually. While the effective resolution of standard weather models is mostly con-51

stant with lead time and adjusted with a diffusion scheme, it is less clear what determines52

the effective resolution of AI models, which can also significantly change with lead time.53

In fact, many AI models seem to suffer from excess smoothing and loss of energy at small54

scales (Ben Bouallègue et al., 2024; Selz & Craig, 2023).55

For MSE or MAE metrics, it is well known that the optimal prediction is the mean56

or median, respectively, of the predictive distribution (Section 8.2 of Hsieh, 2023). Hence,57

one might expect that an AI forecast is closely related to the mean of an ensemble fore-58

cast. However, it is difficult to see such a relationship in practice (Bonavita, 2024).59

The effective resolution of a weather prediction model is important for several rea-60

sons. First, the low computational cost of running AI models enables the creation of large61

ensembles to more accurately represent the forecast distribution. However, if each mem-62

ber has a low effective resolution or even resembles an ensemble mean, crucial variabil-63

ity will be missing. Second, extreme events are often caused by a superposition of fea-64
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tures on many scales and a low resolution model may systematically underestimate them65

(e.g., Charlton-Perez et al., 2024). Third, for performance comparisons based on (root)66

mean square errors, smooth predictions will lead to better scores by avoiding the double-67

penalty effect, especially at long lead times (Ben Bouallègue et al., 2024; Bonavita, 2024),68

which has been framed as the “accuracy–activity trade-off” (Ben Bouallègue et al., 2024).69

Hence the question arises to what extent the better scores of the AI models are an ar-70

tifact of their smoothness.71

In this research letter, we show what effective resolution can be expected from the72

AI model in the ideal case of infinite capacity and perfect training and clarify the rela-73

tionship between AI model predictions and the ensemble mean or median. Using fore-74

casts from recent AI models, we then explore the practical validity of this argument and75

its limitations. Finally, we analyze and explain the effect of smoothing on error scores76

and suggest a spectral rescaling method for a “fairer”, resolution-independent compar-77

ison.78

2 Models, Data and Methods79

2.1 Mathematical argument80

We start by presenting a mathematical argument that connects the effective res-81

olution of the AI model to the design of the loss function. Consider a true initial con-82

dition state vector xt0 , from which we want to calculate a prediction x̂θ
t (xt0) using an83

AI model, where t0 and t refer to the forecast init and valid time, respectively, and θ to84

the set of learnable parameters of the model. Since the initial state is typically estimated85

with a certain amount of uncertainty which will grow with forecast lead time τ = t−86

t0, perfect forecasts from such imperfect initial states will be samples from a predictive87

distribution p(xt|xt0).88

With the training of an AI system, one tries to estimate the set of parameters θ∗89

which minimize the expectation of a distance metric between model forecasts x̂θ
t (xt0) and90

true states xt, the so-called loss function. Here, we assume a simple L2 metric over the91

normalized state vector and discuss other metrics below. In an ideal setting, the expec-92

tation of the loss function is taken over all possible initial and final states, hence93

θ∗ = argmin
θ

Ep(xt,xt0
)

[
||xt − x̂θ

t (xt0)||2
]
. (1)

With the law of total expectation and by expanding the square, this can be rewritten94

as95

θ∗ = argmin
θ

Ep(xt0 )

[
||µt|t0 − x̂θ

t (xt0)||2
]
, (2)

where we have defined the mean of the predictive distribution96

µt|t0 :=

∫
dxt xt p(xt|xt0). (3)

Consequently, the optimal prediction is the mean of the predictive distribution, i.e.:97

x̂θ∗

t (xt0) = µt|t0 . (4)

Some AI models use multiple time steps (t1, . . . , tn) inside the loss function and98

average over the individual loses:99

θ∗ = argmin
θ

Ep(xtn ,...,xt1 ,xt0 )

[ tn∑
t′=t1

||xt′ − x̂θ
t′(xt0)||2

]
. (5)

We will refer to this averaging period as the “lead time training interval”100

τtrain := tn − t0. (6)
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With the linearity of the expectation and the above we get101

θ∗ = argmin
θ

tn∑
t′=t1

Ep(xt0
)

[
||µt′|t0 − x̂θ

t′(xt0)||2
]
. (7)

Hence an optimal prediction will follow the mean of the predictive distribution over τtrain,102

x̂θ∗

t (xt0) = µt|t0 , for t ∈ t0 + [τ1, . . . , τtrain]. (8)

As we will see later in detail, this result has direct implications with respect to the ef-103

fective resolution of the model, since unpredictable small-scale structures cancel out in104

the mean.105

A similar result holds for other loss functions: In the case of the widely used L1106

metric it can be shown that an ideal prediction will follow the median of the predictive107

distribution instead of the mean. Since most atmospheric variables have approximately108

symmetric predictive distributions, the mean and median are similar.109

For real-world AI models the expectation in the ideal loss function needs to be re-110

placed by averages over a training dataset,111

L ∼
∑
t0

∑
τ

∑
j

wj

(
x
(j)
t0+τ − x̂

θ (j)
t0,τ

)2

, (9)

with j indexing the model state vector (grid box, level, variable). Mostly, ERA5 reanal-112

ysis (Hersbach et al., 2017) and IFS operational analysis have been used with initial times113

(t0) from the satellite era (since 1979) as estimates of the truth. It is common to insert114

weighting factors wj into the loss function (e.g., Bi et al., 2023). Also note that some115

AI models target differences rather than the variable values directly. However, none of116

these modifications affects the optimality results stated above.117

Aside from these simple approaches, more complicated loss functions have some-118

times been used, which also include non-linear functions of the state vector like spectra119

(e.g., Kochkov et al., 2024). In such cases the presented mathematical argument may120

not apply.121

The ensemble median or mean is the target of training, but may not be achieved122

in practice. Neural networks appear to exhibit a spectral bias (Xu et al., 2019; Rahaman123

et al., 2019), where large spatial scales are learned first, and small scales may not be learned124

at all (Chattopadhyay et al., 2024). Therefore, we hypothesize that AI models due to125

lack of capacity or incomplete training will tend to be even smoother than the mean.126

2.2 AI-model forecasts and data127

To test the applicability of the mathematical argument, we analyze the effective128

resolution of several different AI models.129

Aurora (Bodnar et al., 2024) is a transformer-based model. Its basic version, in-130

tended as a foundation model, is trained on a mixture of forecasts, analysis data, reanal-131

ysis data, and climate simulations. Here, we consider two versions with additional fine-132

tuning on IFS-HRES data. One version uses a short lead time training interval of only133

the first two time steps (6 h, 12 h), which we refer to as Aurora-S (for short). The other134

version uses a long lead time training interval of ten days, which we will call Aurora-L135

(for long).136

Pangu (Bi et al., 2023) is also a transformer-based model, which was trained on137

ERA5 only. It comes in 4 different versions that perform forecasts for 4 different lead138

times (1 h, 3 h, 6 h, 24 h). The 1-h, 3-h, and 6-h models produce far less accurate fore-139

casts than the 24-h model and are intended to be used only to successively fill in time140
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steps. However, for the purpose of this study, we run each of these models individually.141

The lead time training interval for all of these models is only one time step.142

GraphCast (Lam et al., 2023) is an AI model based on a graph neural network. Here143

we will not use the paper version, but the “operational” version, which has additional144

training on IFS-HRES data.145

GenCast (Price et al., 2025), unlike the previous models, is trained to generate sam-146

ples from the forecast distribution. It creates forecasts from denoising random fields. For147

the purpose of this paper, we only consider a single ensemble member. Like with Graph-148

Cast, we use the “operational” version, which in addition to ERA5 has been trained on149

IFS-HRES data.150

All of these models use a regular lat-lon grid with 0.25◦ grid spacing and either a151

simple L1 or L2 metric in their loss function. With each model, we conducted a sam-152

ple of 12 forecasts, initialized on the first day of each month of the year 2024. Unless stated153

otherwise, the presented results are averages over these cases to reduce random variabil-154

ity. All forecasts are carried out for 15 days lead time, except for Pangu-1h, which quickly155

became unstable. Regardless of its training dataset, we initialize every AI model with156

the IFS operational analysis.157

To estimate the effective resolution of the models, we consider the kinetic energy158

spectrum at the upper troposphere (300 hPa), which follows known power laws (e.g., Nas-159

trom & Gage, 1985). Kinetic energy spectra are computed based on global spherical har-160

monic coefficients of divergence (d) and vorticity (ζ), which are calculated from the hor-161

izontal wind using the Climate Data Operators (CDO; Schulzweida, 2024). The kinetic162

energy of a total wave number l is then given by (see e.g., Augier & Lindborg, 2013)163

KE(l) =
r2

2l(l + 1)

l∑
m=−l

(
|ζlm|2 + |dlm|2

)
, (10)

where r is the radius of the earth and a wavelength λ = 2πr/l is attributed to the global164

wave number l.165

Finally, we need an estimate of the predictive distribution (3) to test the applica-166

bility of the mathematical argument. This will be taken from the ECMWF ensemble pre-167

diction system (IFS-ENS), a 50-member ensemble constructed from perturbations to sam-168

ple uncertainty in the initial conditions and the model (see https://www.ecmwf.int).169

Here, we only show empirical results using the mean, since mean and median are sim-170

ilar for upper tropospheric winds but the median is more prone to sampling error.171

The ensemble also includes an unperturbed control simulation (IFS-CTL), which172

since the resolution upgrade in June 2023 is identical to the former high-resolution de-173

terministic run (HRES) and will be used as reference. For validation, the IFS operational174

analysis is used as the ground truth.175

3 Results176

3.1 Effective resolution and ensemble mean177

We start by investigating the effective resolution of the Aurora-S and Aurora-L model,178

which differ greatly in their lead time training interval (12 hours versus 10 days), but179

are otherwise identical. Figure 1 shows their kinetic energy spectra for four different lead180

times. The IFS ensemble mean serves as estimator of the predictive distribution. Due181

to uncertainty growth from initial condition and model uncertainty, as the forecast lead182

time increases more and more spatial scales become unpredictable, which leads to their183

cancellation in the ensemble mean. This process starts at the smallest scales and suc-184

cessively affects larger and larger scales with increasing lead time (e.g., Selz et al., 2022).185
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Figure 1. Kinetic energy spectra of Aurora-S (left) and Aurora-L (right), for several forecast

lead times (solid lines). The dashed lines indicate the spectra of the IFS ensemble mean.

Hence, the “effective resolution” of the IFS ensemble mean continuously decreases with186

lead time and the kinetic energy becomes unrealistically low on larger and larger scales.187

Looking at the Aurora-S simulations, the spectrum indicates an initial loss of small-188

scale energy in the first 12 hours, but stays approximately constant afterwards. For scales189

larger than about 300 km, the spectrum of Aurora-S stays close to the 12-h IFS ensem-190

ble mean. In contrast, the Aurora-L simulations constantly lose energy over lead time191

and follow the IFS ensemble mean closely, at least for amplitudes larger than 10−2 m2 s−2.192

The discrepancy below is due to sampling errors from the relatively small IFS ensem-193

ble. Also keep in mind that the IFS ensemble mean is only an estimate of the predic-194

tive distribution.195

These results clearly illustrate the importance of the lead time training interval for196

the effective resolution of deterministic AI models. While Aurora-S produces a largely197

stable spectrum, Aurora-L suffers from a continuous loss of kinetic energy and effective198

resolution and closely follows the IFS ensemble mean. To further demonstrate the sig-199

nificance of these differences, Fig. 2 shows maps from a single 10-day forecast from both200

Aurora models, the IFS-CTL and the IFS ensemble mean. Aurora-S and the IFS-CTL201

show pronounced Rossby wave structures with troughs and ridges and associated merid-202

ional winds. Although different from each other and from the truth, both states are ap-203

proximate realizations of the atmospheric flow or samples from the predictive distribu-204

tion. On the other hand, the loss of small-scale kinetic energy of the Aurora-L forecasts205

results in highly smoothed spatial fields with strongly damped Rossby waves. The re-206

semblance of Aurora-L to the IFS-ensemble mean is clearly visible. These forecasts are207

not possible realizations of the atmospheric flow, but they estimate the expectation of208

the predictive distribution.209

3.2 Kinetic energy time series210

In order to test the effective resolution and the applicability of the mathematical211

argument on further AI models, we integrate the kinetic energy between scales of 400 km212

and 4000 km. This results in a time series for each model that quantifies kinetic energy213

loss, which is shown in Figure 3, also including the IFS ensemble mean as reference.214

We start with discussing the four different versions of Pangu, where the lead time215

training interval is only the first time step, i.e., 1 h, 3 h, 6 h, and 24 h, respectively. The216

kinetic energies at the end of the training intervals are close to the IFS ensemble mean,217
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Figure 2. 10-day forecasts of 300 hPa meridional wind (color) and geopotential (lines, spacing

1000m2 s−2) over the North Atlantic and Europe for four different experiments. The forecasts

were started on 1 Jan 2024, 0 UTC.

Figure 3. 300 hPa kinetic energy between 400 km and 4000 km wavelength over lead time,

relative to initial condition. The plots on the left show a zoom into the initial period. Top and

bottom rows show different sets of models. Solid lines indicate lead times within the training

interval (τ ≤ τtrain), and dashed lines indicate later lead times. A vertical bar is marking τtrain.
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but slightly too low. Most notably, the 24-h model at its first time step has a much lower218

resolution compared to the other three models, which are roughly similar. After the train-219

ing interval, the 3-h, 6-h, and 24-h model further lose some kinetic energy, but after a220

few days show a more stable spectrum. The 1-h model however, after an initial loss of221

kinetic energy, quickly becomes unstable.222

For the two Aurora models, Fig. 3 confirms the findings already discussed above:223

Aurora-S creates a basically stable spectrum, slightly below the IFS-ensemble mean value224

at the end of the 12-h training interval, while Aurora-L produces a constantly decaying225

spectrum, closely following the IFS ensemble mean over the 10-day training interval. Note226

however, that the kinetic energy of Aurora-L is increasing again after this 10-day period,227

which points to an accumulation of unphysical noise and indicates an unstable model228

that is not suitable for longer forecasts.229

The GraphCast model with its 3-day training interval only roughly follows the IFS230

ensemble mean, being slightly smoother for the first 1.5 days, and less smooth for the231

second 1.5 days. This latter behavior contradicts our expectations by producing a fore-232

cast with higher effective resolution than the ensemble mean. However, GraphCast was233

trained using a curriculum approach in which training stated with a single time inter-234

val and then slowly increased the lead time interval out to three days. This combined235

with the fact that GraphCast is a relatively small model is likely lead to the behavior236

noted above. After the 3 days there is some further decay of kinetic energy, but the spec-237

trum remains stable after about 6-7 days.238

GenCast, which is not trained to approximate the ensemble mean or median, but239

to generate samples from the full distribution, is best able to retain the initial spectrum240

at all lead times.241

3.3 Impact of the resolution on mean-square error scores242

A standard way to evaluate the quality of deterministic weather forecasts is to com-243

pute the spatially averaged squared difference of some variable to a representation of the244

truth, referred to as mean-square error. Among others, Ben Bouallègue et al. (2024) demon-245

strated, that smooth (“low activity”) forecasts can lead to better MSE scores by avoid-246

ing the double-penalty effect. With the help of the kinetic energy spectrum, we formally247

explain the reason for the double-penalty effect and confirm it with our simulation data.248

An area-weighted mean-square error over the entire globe can equally be computed249

from spherical harmonics expansions, since Parseval’s identity applies. This allows for250

a scale-dependent formulation of the error, which for error kinetic energy (EKE) reads251

EKE(l) =
r2

2l(l + 1)

l∑
m=−l

(
|ζ̂lm − ζlm|2 + |d̂lm − dlm|2

)
, (11)

where the hat indicates the forecast and non-hat symbols indicate the truth (a similar252

formalism can be applied to limited domains using Fourier or Cosine transforms). The253

scale-dependent EKE of the 10-day forecasts is plotted in Fig. 4a, normalized with the254

kinetic energy (10) of the analysis. For reference, the equally normalized kinetic energy255

spectrum is shown in Fig. 4b.256

To interpret these plots and to understand the double-penalty effect, we expand257

the absolute square difference,258 ∑
m

|ζ̂lm − ζlm|2 =
∑
m

[
(r̂lm − rlm)2 + 2r̂lmrlm

(
1− cos(ϕ̂lm − ϕlm)

)]
, (12)

where rlm and ϕlm are amplitude and phase of the complex number ζlm, respectively.259

A similar expression holds for any other variable. Consider a mode l, that is no longer260
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Figure 4. (a) Error kinetic energy spectra of 10-day forecasts over wavelength, relative to the

kinetic energy spectrum of the IFS analysis. (b) Same as a, but for kinetic energy spectra. (c)

Globally averaged EKE relative to IFS-CTL, computed using (11) and summing over l. (d) Same

as c, but relative to a rescaled version of the IFS-CTL by applying (13). Note that these rescale

factors differ, depending on the model IFS-CTL was compared to.
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predictable. If the model returns zero for that mode, the second term on the left hand261

side in (12) vanishes and the error equals the amplitude of the analysis spectrum. On262

the other hand, if the model maintains the correct amplitude but predicts a random phase,263

the first term vanishes and the error equals twice the analysis spectrum (since the ex-264

pectation of the cosine term is zero) and therefore twice the error compared to predict-265

ing zeros (hence double-penalty).266

This relation between the error (EKE) and the amplitude (KE) for unpredictable267

modes becomes evident from our data by comparing Figs. 4a and b: Aurora-L and the268

IFS ensemble mean produce a normalized EKE of one for scales smaller than 2000 km269

and at the same time an amplitude close to zero. The other models resemble the IFS-270

CTL for scales larger than around 1000 km, producing an EKE of two, but an almost271

realistic amplitude. Towards small scales, the normalized EKE of all AI models except272

GenCast drops to one as a consequence of their decaying KE. The consequence of the273

double-penalty effect can also clearly be seen in the EKE time series (Fig. 4c), where smooth274

forecasts (IFS ensemble mean and Aurora-L) clearly outperform the IFS-CTL and ev-275

ery other model, most significantly at long lead times.276

As demonstrated, the scores of the AI models are enhanced by the cancellation of277

unpredictable modes, which does not indicate a “true” advantage. But the question re-278

mains, to what extent? One possibility to exclude the smoothing benefit from a com-279

parison of two models is to equalize their spectra before calculating the EKE or any other280

mean square error. This can be done by rescaling (damping) the spectral modes of model281

B to the amplitude of the smoother model A, i.e.,282

ζBlm −→

√∑
m |ζAlm|2∑
m |ζBlm|2

ζBlm, (13)

and similarly for other variables.283

The result of such a comparison is shown in Fig. 4d, where the IFS-CTL spectrum284

was rescaled to the AI model spectrum. One can see, that the superior skills of the IFS285

ensemble mean and Aurora-L from Fig. 4c are greatly reduced, especially at long lead286

times. Indeed for lead times greater than about one week, all AI models perform equally287

well compared to IFS-CTL, or rather equally badly since there is little practical predictabil-288

ity remaining (Buizza & Leutbecher, 2015; Selz et al., 2022). The difference between Figs. 4c289

and d is directly correlated to the amount of smoothing produced by the models: It is290

large for the IFS ensemble mean and Aurora-L, but small for models that approximately291

maintain the KE spectrum, like Aurora-S, Pangu and GenCast. Note that GenCast is292

trained to generate samples of the predictive distribution and hence introduces pertur-293

bations, which lead to larger errors, especially at early lead times. An even slightly worse294

degradation of the EKE can be seen from an individual member of the IFS ensemble.295

4 Discussion296

In summary, we demonstrated with a mathematical argument that the lead time297

interval in the loss function crucially determines the kinetic energy spectrum and hence298

the effective resolution of an AI model. If perfectly trained, a model would follow the299

spectrum of an ideal ensemble mean over that interval and continuously drop unpredictable300

modes, leading to increasingly smooth forecasts. We also confirmed that smooth fore-301

casts produce much better mean-square error scores by avoiding the double penalty ef-302

fect and we suggested a method to correct for that.303

From our findings, we can identify two basic approaches to weather forecasting with304

AI: Either a model could be designed to generate samples from the predictive distribu-305

tion, in which case the lead time training interval should be kept as short as possible.306

Alternatively, a model could be designed to generate the expectation (the ensemble mean)307
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of the predictive distribution, in which case the lead time training interval should extend308

to the entire intended forecast lead time.309

Both approaches have their justification, however, they should not be mixed and310

it should be made clear, which one was chosen, since this has consequences for the us-311

age of the model. Models of the first type (Aurora-S, Pangu) can be used to sample the312

forecast distribution by means of an ensemble, stated from an initial condition sample313

or using intrinsic stochastisity (GenCast). Each simulation resembles a possible state of314

the atmosphere that, at least approximately, is physically consistent. Models of the sec-315

ond type on the other hand (like Aurora-L) are not suitable to generate ensembles, do316

not produce possible realizations of the atmospheric flow and their output is physically317

inconsistent. However, they do resemble the remaining predictable structures in a sin-318

gle run and predictability can be inferred from the remaining spatial scales.319

Although the lead time training interval is crucial for the model’s effective reso-320

lution, it cannot explain every aspect of it. Most importantly, the presented mathemat-321

ical argument does not hold for predictions outside of the lead time training interval. In322

this case, previous forecasts are being fed into the model, which resemble the mean and323

are much smoother than the training dataset. The reaction of the model to this incon-324

sistency is largely unconstrained. In fact, some models in our study show instability af-325

ter the lead time training interval and most models continue to lose some kinetic energy.326

In addition, no model was able to maintain the kinetic energy spectrum on scales smaller327

than about 300-400 km. Potential reasons for these effects include insufficient training,328

insufficient capacity, limited sample size of the training data or limitations in the design329

of the network.330

Open Research Section331

The AI-model weights, example code and documentation can be found on github:332

https://github.com/google-deepmind/GraphCast, https://github.com/microsoft/333

aurora, https://github.com/198808xc/Pangu-Weather. The spherical harmonic co-334

efficients of the forecast data are available at https://opendata.physik.lmu.de/H66gKyhITQ7qS51335

(permanent link after acceptance). The IFS operational analyses, the IFS-CTL and IFS-336

ENS forecast were retrieved from ECMWF’s operational archive (https://apps.ecmwf337

.int/archive-catalogue/?class=od). To obtain access, visit https://www.ecmwf.int/338

en/forecasts/accessing-forecasts for further information.339
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Janoušek, M., . . . others (2024). The rise of data-driven weather forecasting:352

A first statistical assessment of machine learning–based weather forecasts in353

an operational-like context. Bulletin of the American Meteorological Society ,354

105 (6), E864–E883.355

–11–



manuscript submitted to Geophysical Research Letters
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